US 2003/0233644 Al

installing other device drivers, hardware or software, are
contemplated by the inventors to be within the scope of the
invention.

[0039] Referring next to FIG. 4, an exemplary flow chart
illustrates the operation of the driver software 304 compo-
nents. At step 402, the target software 110 is identified from
a command received from a user. A list of one or more tasks
associated with execution of the command is generated at
step 404. Generating a list of one or more tasks associated
with the execution of a command occurs dynamically, or
on-the-fly, in that the tasks are not hard-coded into the driver
components. The driver components dynamically generate
the list of tasks to be performed and store the list in a queue.
At step 406, the list of one or more tasks is stored in a queue
accessible by the computer 102. The list of one or more tasks
stored in the queue are modified at step 408 such that the
tasks are directed to operate on the target computer-readable
media 108. That is, the list is modified such that an operating
system of the computer 102 such as operating system 302
will execute the listed tasks to manipulate or otherwise
operate on the target software 110. The driver components
edit the list of tasks stored in the queue to point to the offline
image loaded in the online system. For example, the driver
component may edit a string in the list of tasks from
“D:\i386\System32” to “C:\opsysdir\System32.” At step
410, the queue is committed to perform each of the modified
tasks. Alternatively, the computer 102 may generate, store,
and modify the tasks while the target software 110 is online
and then commit the queue to perform the tasks when the
target software 110 is offline.

[0040] Referring now to FIG. 5, a block diagram illus-
trates an exemplary computer-readable medium 502 storing
a queue 504. In this instance, the queue 504 is a data
structure that can be used by the computer 102 to manipulate
the target software 110 stored on the target computer-
readable media 108. The queue 504 has a queue field 506
that stores a list of one or more tasks 508 such as task #1
through task #N that are associated with execution of a
command received from a user.

[0041] Inone embodiment, the computer 102 modifies the
list of tasks 508 stored in the queue field 506 to direct the
tasks 508 to operate on the target computer-readable media
108. Further, the computer 102 commits the queue to
perform each of the modified tasks 508 stored in the queue
field.

[0042] Referring next to FIG. 6, a block diagram illus-
trates the exemplary elements of software for offline
manipulation of mass storage device drivers. As described
above, the computer 102 is connected to the target software
110 via network 106. In this example, the computer 102
includes user interface 602, a system preparation file 604,
and a software tool 606. The target software 110 includes a
device database 608. The device database 608 stores mass
storage device drivers. While the computer 102 is shown
connected to the target software 110 via network 106, such
a connection is optional as described above.

[0043] The user interface 602 is, for example, a graphical
user interface (GUI) that allows the user to create the system
preparation file 604. In this instance, the system preparation
file 604 includes a list of drivers 610 to be added to the target
software 110 in response to the input received from the user,
identification data 612 for each of the drivers, and configu-

Dec. 18, 2003

ration information 614 for each of the drivers. For example,
the list of drivers 610 may include a text-based description
of each driver. In addition, the identification data 612 may
include a unique identifier corresponding to each driver.
Further, the configuration information 614 may specify
parameters for use when installing each driver.

[0044] The software tool 606 executes executable instruc-
tions on the computer 102 in response to input received by
the user interface 602. The software tool 606 includes a
command-line interface 616 for parsing command-line
options received via the user interface 602. In one embodi-
ment, the command-line options identify the system prepa-
ration file 604 (e.g., via a path), the target computer-readable
medium 108 (e.g., via a path), and/or the target software 110.
The execution of the executable instructions by software
tool 606 and the command-line interface 616 allows
manipulation of the target software 110. By way of example,
and not limitation, the manipulation of the target software
110 includes: installing the list of drivers 610 to the target
software 110, enabling the drivers by adding the identifica-
tion data 612 from the system preparation file 604 to the
device database 608, configuring the drivers according to the
configuration information 614, and updating one or more
system settings for the server 104 as needed by the installed
drivers.

[0045] In an alternative embodiment, the invention soft-
ware is operable in an offline fashion with images or target
software 110 that have not been fully applied, installed, or
otherwise integrated. For example, the invention software
can modify application programs that have been pre-in-
stalled or staged. Similarly, a software patch can be applied
to an offline image prior to the first out of the box experience
by the user. In a further example, an original equipment
manufacturer (OEM) can add a driver that is necessary for
booting from an offline image that includes an operating
system. The offline image can then boot after the OEM adds
the necessary driver. In another example, an OEM can add
a service pack or other patch to numerous offline images that
have not yet been applied or integrated.

[0046] FIG. 7 shows one example of a general purpose
computing device in the form of a computer 130. In one
embodiment of the invention, a computer such as the com-
puter 130 is suitable for use in the other figures illustrated
and described herein. Computer 130 has one or more pro-
cessors or processing units 132 and a system memory 134.
In the illustrated embodiment, a system bus 136 couples
various system components including the system memory
134 to the processors 132. The bus 136 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an
accelerated graphics port, and a processor or local bus using
any of a variety of bus architectures. By way of example,
and not limitation, such architectures include Industry Stan-
dard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus also known as Mezza-
nine bus.

[0047] The computer 130 typically has at least some form
of computer-readable media. Computer-readable media,
which include both volatile and nonvolatile media, remov-
able and non-removable media, may be any available



